Quasideterminant solutions of a non-Abelian Hirota-Miwa equation
نویسندگان
چکیده
A non-Abelian version of the Hirota-Miwa equation is considered. In an earlier paper [Nimmo (2006) J. Phys. A: Math. Gen. 39, 5053-5065] it was shown how solutions expressed as quasideterminants could be constructed for this system by means of Darboux transformations. In this paper we discuss these solutions from a different perspective and show that the solutions are quasi-Plücker coordinates and that the non-Abelian Hirota-Miwa equation may be written as a quasi-Plücker relation. The special case of the matrix Hirota-Miwa equation is also considered using a more traditional, bilinear approach and the techniques are compared.
منابع مشابه
On solutions to the non-Abelian Hirota–Miwa equation and its continuum limits
In this paper, we construct Grammian-like quasideterminant solutions of a non-Abelian Hirota–Miwa equation. Through continuum limits of this non-Abelian Hirota–Miwa equation and its quasideterminant solutions, we construct a cascade of noncommutative differential-difference equations ending with the non-commutative KP equation. For each of these systems, the quasideterminant solutions are const...
متن کاملQuasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation
Two families of solutions of a generalized non-Abelian Toda lattice are considered. These solutions are expressed in terms of quasideterminants, constructed by means of Darboux and binary Darboux transformations. As an example of the application of these solutions, we consider the 2-periodic reduction to a matrix sine-Gordon equation. In particular, we investigate the interaction properties of ...
متن کاملOn a direct approach to quasideterminant solutions of a noncommutative KP equation
A noncommutative version of the KP equation and two families of its solutions expressed as quasideterminants are discussed. The origin of these solutions is explained by means of Darboux and binary Darboux transformations. Additionally, it is shown that these solutions may also be verified directly. This approach is reminiscent of the wronskian technique used for the Hirota bilinear form of the...
متن کاملSolitary Wave solutions to the (3+1)-dimensional Jimbo Miwa equation
The homogeneous balance method can be used to construct exact traveling wave solutions of nonlinear partial differential equations. In this paper, this method is used to construct new soliton solutions of the (3+1) Jimbo--Miwa equation.
متن کاملDesargues Maps and the Hirota–miwa Equation
We study the Desargues maps φ : Z → P , which generate lattices whose points are collinear with all their nearest (in positive directions) neighbours. The multidimensional consistency of the map is equivalent to the Desargues theorem and its higher-dimensional generalizations. The nonlinear counterpart of the map is the non-commutative (in general) Hirota–Miwa system. In the commutative case of...
متن کامل